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ABSTRACT
This Letter discusses the role of a weak toroidal magnetic field in modifying the turbulent transport properties

of stably stratified rotating turbulence in the tachocline. A local two-dimensional b-plane model is investigated
numerically. In the absence of magnetic fields, nonlinear interactions of Rossby waves lead to the formation of
strong mean zonal flows. However, the addition of even a very weak toroidal field suppresses the generation of
mean flows. We argue that this has serious implications for angular momentum transport in the lower tachocline.
Subject headings: MHD—Sun: interior— Sun: magnetic fields— turbulence

1. INTRODUCTION

The solar tachocline is now considered to be of fundamental
importance in driving solar magnetic activity. This thin layer
of strong radial shear at the base of the solar convection zone
is believed to play a key part in the generation of large-scale
magnetic fields by the solar dynamo and may also play an
important role in mixing processes in the solar interior. Since
its discovery, there has been some progress in understanding
the fundamental processes that determine the dynamics of the
tachocline, although there remains much that is not understood
(see, e.g., Tobias 2005; Hughes et al. 2007).
It is now generally accepted that the tachocline comprises two

layers. The upper tachocline is coupled strongly to the convection
zone above, is believed to have a strong toroidal magnetic field
generated by the solar dynamo, and is neutrally or weakly stably
stratified. The lower tachocline is very stably stratified, and less
is known about the form and strength of any magnetic field.
There are many open questions concerning the dynamics of both
regions. These include, for the upper tachocline, the role of over-
shooting convection, the stability of strong toroidal fields to joint
and magnetic buoyancy instabilities, and the role of the dynamo-
generated magnetic field (Forgács-Dajka & Petrovay 2001); and,
for the lower tachocline, the role of slow meridional flows, mag-
netic field, and turbulence in redistributing magnetic fields on a
long timescale.
As highlighted by Spiegel & Zahn (1992), the fundamental

question concerning the tachocline is that of its very existence.
They point out that slow radiation-driven meridional flows
would redistribute angular momentum and would, in the sim-
plest case, lead to an appreciable inward spreading of the tacho-
cline over the age of the Sun. They argue, however, that strong
stratification would noticeably modify any turbulence, render-
ing it essentially two-dimensional, resulting in an anisotropic
eddy viscosity (or friction), which, in turn, would prevent the
spreading of the tachocline. A central question, therefore, is
whether stably stratified turbulence does indeed act as a vis-
cosity (friction) in redistributing angular momentum on long
timescales. Gough & McIntyre (1998) argue instead that such
turbulence would act as an antifriction, homogenizing potential
vorticity and driving mean flows. At the heart of this argument,
therefore, is the role of the fast turbulent processes in redis-
tributing angular momentum on a long timescale.
Although this problem is of central importance for tachocline

dynamics, it has been relatively uninvestigated in this context. An
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excellent review of the literature and explanation of the underlying
physics is provided by Miesch (2005), and we give only a brief
summary here. The lower tachocline can be modeled as an in-
compressible strongly stratified rotating fluid; flows then take the
form of pancake-like structures in decoupled two-dimensional lay-
ers (e.g., Herring & Métais 1989). Two-dimensional systems are
well known to form large-scale flows via the process of vortex
merging (an inverse cascade)—a process that can be halted by the
presence of rotation. In a rotating system, these vortex patches
can be thought of as nonlinear Rossby waves that propagate zo-
nally and disperse before merging, leading to the formation of
zonal flows on large scales (e.g., Rhines 1975; Diamond et al.
2005). Some aspects of this hydrodynamic behavior persist in fully
three-dimensional simulations of stably stratified turbulence in
spherical shells (see Miesch 2001, 2003).
In this Letter, we examine the influence of a magnetic field

on the dynamics of forced, rotating, two-dimensional turbu-
lence. This is a potentially important issue since it is well
known that even very weak magnetic fields may play an im-
portant role in modifying turbulent transport properties. As a
simple local model of the deep tachocline, we consider two-
dimensional dynamics on a b-plane (in common with some of
the hydrodynamic models described above). We allow for the
presence of a mean field aligned with the direction of potential
jet formation and determine its influence on the dynamics. We
present the results of high-resolution, numerical simulations of
the model in order to determine the subtle effects of the aligned
magnetic field in modifying the turbulent fluxes that lead to
jet formation. Complementary analytical approaches have been
undertaken using either closure (Diamond et al. 2007) or quasi-
linear approximations (Leprovost & Kim 2007).

2. MODEL AND EQUATIONS

2.1. Parameter Regime for the Base of the Tachocline

As noted above, strong stable stratification leads to the gen-
eration of predominantly two-dimensional flows. To fix ideas,
we summarize the important nondimensional parameters for
dynamics in the lower tachocline. Although the astrophysical
parameter regime is not accessible by numerical simulations,
we are able to examine turbulent flows in which the correct
ordering of the various physical effects is maintained. The de-
gree of stratification in a shear flow is often measured by the
Richardson number Ri; in the lower tachocline , and3Ri ≈ 10
so stratification is of central importance. The Rossby number
Ro measures the ratio of inertial to Coriolis terms; in the tacho-
cline, (this estimate has a degree of uncertaintyRo ≈ 0.1–1
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Fig. 1.—Geometry and computational domain for the local Cartesian model.

owing to difficulties in estimating typical flow speeds). Hence,
rotational effects are as important as inertial effects. The Ekman
number, a measure of the relative importance of viscous to
Coriolis terms, is exceptionally small ( ). The mag-!11E ≈ 10
netic Reynolds number is given by (where!1Rm p RoE Pm
Pm is the magnetic Prandtl number). For the tachocline,

and is therefore large (even allowing for un-5 6Rm ≈ 10 –10
certainties in the size of Ro), while the fluids Reynolds number

is even larger.!1Re p RoE
To summarize, the appropriate regime is where the flow is

two-dimensional (“shellular”), rotationally influenced although
not rotationally constrained, and turbulent. There are, though,
no reliable estimates of the strength of the large-scale magnetic
field in the tachocline, so it is of interest to determine how the
dynamics may change with large-scale field strength.

2.2. Equations and Geometry

The governing equations of our model are the forced mo-
mentum equation for an incompressible fluid with unit density

!u 2" (u · !)u" 2Q " u p !!p" j" B" n! u" F, (1)
!t

! · u p 0, (2)

together with the magnetic induction equation

!B 2p ! " (u" B)" h! B, (3)
!t

where is the velocity, is the forcing, is the rotation,u F Q B
is the magnetic field, is the current, and n and h are nondi-j
mensional measures of the viscosity and magnetic diffusivity.
Because the system is forced, the natural size of the velocity
(and hence the significance of the sizes of n, h, and the imposed
magnetic field) does not emerge until the system has equili-
brated. Nondimensional parameters involving velocities can
only be calculated a posteriori.
We consider a local domain located in the lower tachocline,

with coordinate axes as summarized in Figure 1. Here x(x, y, z)
represents longitude (azimuth), y colatitude, and z depth. We con-
sider a two-dimensional model with all variables independent of
z. In order to include the effects of rotation in such a model, it is
necessary to employ the b-plane approximation, where only the
vertical component of rotation is retained and 2Q p (0, 0, f"

(see, e.g., Pedlosky 1992). We consider a two-dimensionalby)
incompressible velocity field , , 0), whereu p (w !w w(x, y, t)y x
is the stream function. The magnetic field has a mean azimuthal
component ( ), and so we set , , 0), whereB B p (B " A !A0 0 y x

is the potential. The vorticity withA(x, y, t) q p [0, 0, q(x, y, t)]
. Progress is made by considering the z-component of2q p !! w

the vorticity equation together with the equation for A. These give

2 2 2q p J(w, q)" bw " J(A, ! A)! B ! A " n! q " G ,t x 0 x 0

(4)

2A p J(w, A)" B w " h! A, (5)t 0 x

where and is the z-componentJ(a, b) p a b ! a b G (x, y, t)x y y x 0
of the couple.
As the model is local, we employ periodic boundary con-

ditions. Equations (4) and (5) are solved using standard pseu-
dospectral techniques on a parallel computer. This enables us
to access turbulent parameter regimes. The forcing is de-G0
signed to sample spectral modes with wavenumbers 14 ≤ k ,x

and amplitude . For two reasons, and unlike somek ≤ 20 Gy 1
other simulations of purely hydrodynamic b-plane turbulence,
we do not include any sink term to remove energy at large
scales. First, for the tachocline it is expected that (purely hy-
drodynamically) any large-scale zonal flow would dominate
the small-scale turbulence, and so it makes no sense to suppress
the strength of this flow arbitrarily. Second, as we are interested
in determining the strength of magnetic field that can inhibit
the generation of mean flows, we err on the side of caution
and ignore all arbitrary suppression mechanisms.

3. RESULTS

The dynamics of the model system is controlled by the pa-
rameters , b, and n for purely hydrodynamic simulations and,G1
in addition, by and h for MHD simulations. In this Letter,B0
we hold constant the forcing and the viscosityG p 2.0 n p1

. The emerging flows are therefore turbulent and require a!410
high resolution (10242) for accurate computation. In § 3.1, we
examine the well-understood hydrodynamic case for two choices
of b, before examining the effects of adding a magnetic field in
§ 3.2.

3.1. Purely Hydrodynamic Solutions

The purely hydrodynamic ( ) system is startedB p A p 00
from rest ( ) with a prescribed forcing that drives theq p 0
system away from the trivial state. As shown in many previous
studies, the dynamics follows an inverse cascade from small
to large scales, with many vortex-merging events leading to
the formation of zonal flows (e.g., Vallis & Maltrud 1993).
This merging process can be characterized by Rossby wave
interactions and decorrelations, where the small-scale Reynolds
stresses correlate and act as “antifriction” to drive a large-scale
flow. The zonal flow saturates on a (long) viscous timescale,
and the system reaches a statistically steady state, shown in
Figure 2 for and . It is clear that a large-scaleb p 5 b p 50
zonal flow has emerged in both cases, with a latitudinal (y)
extent that depends on the value of b and is consistent with
the Rhines length , where U is a typical velocity1/2L ∼ (U/b)
scale. We also note here that for both cases most (197%) of
the kinetic energy is contained in the mean (zonal) flows and
so the system evolves to a shear-dominated state. The aim of
this Letter is to investigate whether this behavior persists when
magnetic fields are present and, if not, to determine the field
strength at which this picture breaks down.
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Fig. 2.—Color-coded density plots of for (left) andu p w b p 5 b py

(right). Red indicates strong prograde flows, while blue indicates strong50
retrograde flows. Because , these plots are representative of theu k v p !wx

flow field.

Fig. 3.—Same as Fig. 2, but with an added toroidal field : (bottomB B p 00 0
left), (bottom right), (top left), and (top right).!3 !2 !1B p 10 B p 10 B p 100 0 0
Here .!4h p 10

Fig. 4.—Suppression of mean flows. Mean flow for (black),ū(y) B p 00
10!4 (dark blue), 10!3 (light blue), (pink), 10!2 (red), and 10!1!35# 10
(purple). Here .!4h p 10

3.2. The Role of a Weak Toroidal Field

In this section, the dynamics of the MHD ( ) systemB ( 00
is investigated (with ) and compared with that of theb p 5
hydrodynamic system described in § 3.1. Again the system is
evolved from rest and allowed to reach a statistically steady
state. This experiment is repeated for a range of values of the
imposed toroidal field, . The final state of the!4 !110 ≤ B ≤ 100
system is shown in Figure 3 for four choices of the imposed
field, for . For , the inverse cascade pro-!4 !3h p 10 B p 100
ceeds in a similar manner to the hydrodynamic case and the
zonal flow emerges and saturates after a viscous time; the final
state is essentially identical to that for . However, theB p 00
top two panels demonstrate that once exceeds some thresh-B0
old value, the dynamics is very different. For and!2B p 100
10!1, the inverse cascade is halted by the presence of the mag-
netic field and the solution rapidly settles down (in an advective
time) to a state of two-dimensional, small-scale MHD turbu-
lence, characterized by the nonlinear interaction of driven
Rossby and Alfvén waves. Here the dynamics is irregular with
large fluctuations about a small mean. The kinetic energy is
much smaller than for the cases with inverse cascades, and the
energy is contained in small scales.
Figure 4 shows the mean flow for six values of theū(y)

imposed field. For small values of , the mean flow persists,B0
with largely the same length scale and amplitude, while for
larger than some threshold value ( , say) the mean flowB B0 ∗

is almost completely suppressed. Here the field acts to remove
the correlations that lead to the generation of mean flows. This
mechanism is investigated in detail in a subsequent paper and
so is only briefly summarized here. The magnetic field is
wrapped up and amplified into small-scale fields by the driven
turbulence. This small-scale field exerts a Maxwell stress on
the fluid that opposes the sense of the correlations that drive
the mean flow. If this Maxwell stress is large enough, then the
Reynolds stresses can be canceled (on average) and the mech-
anism for driving the mean zonal flows switched off. An al-
ternative description (see Diamond et al. 2007) is that the field
introduces Alfvén waves that compete with the dispersive
Rossby waves generating the mean flows. The relative impor-
tance of the Alfvén and Rossby waves depends not only on
the magnetic field strength but also on the length scales on
which the interactions are occurring. We stress that this is a
subtle nonlinear interaction mechanism—because the magnetic
field is aligned with the emerging flows, it does not act directly
to oppose the jets.

Given the uncertainty of the strength of the magnetic field in
the deep tachocline, it is important to determine the dependence
of the threshold on parameters. In particular, it is known thatB∗
for a number of turbulent MHD systems (e.g., Cattaneo & Vain-
shtein 1991) the molecular diffusion (often characterized by Rm)
plays an important role in determining a threshold field strength.
Note, however, that for the system we are considering, Rm can
only be calculated a posteriori and, furthermore, it depends cru-
cially on whether the flow inverse cascades or not. It is therefore
more natural to determine a scaling with the input parameters—
here we choose to vary h and keep all other parameters fixed.
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Fig. 5.—Scaling law for the transition between forward cascades (diamonds)
and inverse cascades (plus signs). The line is given by .2B /h p constant0

Figure 5 shows the result of a series of simulations with a range
of and h, with the final states being characterized by theB0
presence or absence of a large-scale mean flow. There is a
well-defined scaling, namely, . The turbulence dynamics2B ∝ h∗
exhibits two characteristic behaviors, namely, those of two-
dimensional MHD and two-dimensional Rossby wave turbu-
lence. The transition between the two occurs when ˜kv ≈A

, where k is the wavenumber and the Alfvén velocity2 ˜bk /k vx A
of the fluctuating field (Diamond et al. 2007). This balance sets
the turbulent Alfvén frequency to be comparable with the Rossby
wave frequency. This occurs at the length scale ,2 ˜l ≈ (v /b)RM A
where is the magnetic Rhines scale. Further assuming thatlRM
the fluctuating field energy is a factor of Rm larger than that in
the mean, as is typical for weakly magnetized two-dimensional
MHD turbulence, we find . A posteriori calcu-2 1/2l ≈ Rm v /bRM A
lations of Rm, based on the amplitude of the turbulent fluctuating
flows, demonstrate that the theoretical scaling is indeed consistent
with the numerical results. This result has implications for the
dynamics and transport properties of stably stratified, rotating
MHD turbulence. The particular implications for the tachocline
are discussed below.

4. DISCUSSION

By considering a local model of rotating, stably stratified
MHD turbulence, we have demonstrated that a weak azimuthal
magnetic field suppresses the formation of zonal flows. Thus,
in the MHD state, turbulence no longer acts as an antifriction.
The combination of two-dimensionality and large Reynolds
numbers leads to the generation of a strong small-scale field.
This in turn generates Maxwell stresses that, on average, cancel
the Reynolds stresses. This almost exact cancellation means
that the turbulence plays no role in the transport of momen-
tum—and therefore acts neither as an antifriction or a friction.
Because the ratio of the energies in the small- to large-scale
field is controlled by the small magnetic diffusivity, even a
very weak large-scale field can suppress the hydrodynamic
mean flows.
These results have significant implications for the tachocline,

the dynamics of which involves processes on timescales rang-
ing from days to millions of years. In the upper tachocline, all
of the processes are “fast,” by which we mean that they take
place on a timescale of, at most, a few hundred years; the lower
tachocline, by contrast, involves both fast and slow dynamics.

Of necessity, any modeling of the slow dynamics must invoke
parameterization of the fast processes. Our study has explicitly
modeled the net effect of one of the fast processes occurring
in the lower tachocline. We have shown that the role of mag-
netized turbulence cannot be simply parameterized either by
friction (anisotropic or otherwise) or antifriction. Indeed, there
appears to be no net turbulent transport of angular momentum.
Thus, we conclude that confinement of the tachocline is more
likely to occur by slow processes. The most likely alternative
is that a fossil magnetic field in the solar interior acts to inhibit
the spreading of the tachocline (Rüdiger & Kitchatinov 1997).
This approach, though, also has some problems, with the shear-
generated toroidal field potentially becoming unstable to

Tayler instabilities or leading to states for which them p 1
differential rotation propagates inward along magnetic field
lines (MacGregor & Charbonneau 1999; Brun & Zahn 2006).
Of course, our model is a simplification of the solar tacho-

cline, with the flows constrained to be strictly two-dimensional
and local. In subsequent investigations, we shall relax these
assumptions and study turbulent diffusion and angular mo-
mentum transport in driven shallow-water MHD systems (see,
e.g., Gilman 2000) in both local and global geometries.
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